Since its birth in the labs of ARPANET half a century back,Hizoban Higasa no onna Internet has risen to create a truly global communication system connecting people across the world. The last two decades has seen users rising from forty million to around 3 billion, with one billion added in the last four-five years itself. This exponential growth is fueled primarily by three factors: a robust and resilient global network, growth of cheaper and powerful computing driven by the Kurzweil curve and an ecosystem of relevant services created by new companies powered by network effects.
Editor's Note:
Guest author Vignan Velivela is interested in parallel universes, internet access, electric cars and clean energy. Follow him @vignanv8
Over 4 billion people still remain unconnected to the Internet. Users today are predominantly urban since vast majority of investments by telecom industry went into solving the problem of capacity and complexity while not investing enough on last mile access. Case in point, the United States. Over 10 million have no access and 17% of its population (incl. over half of rural Americans) lack quality broadband access. The problem is not merely economic (lower rural revenue, higher capex) as often argued, but also because of technological limitations. In a developing country such as India, this problem is compounded by lack of reliable support infrastructure (like grid power).
US Mobile Broadband Map. Source: 2015 Broadband Progress Report, US FCC
To solve the last mile connectivity problem, we must design a network with the end user in mind. Smartphones today provide the lowest point of entry ($30-35 Android) to the Internet and over a billion of them are being produced annually. To bring the next four billion people on to the Internet in the next few years, wireless (3G/LTE/WiFi) should act as the primary access network.
Governments and Internet majors have been pursuing multiple-approaches to solve this problem.
Google with its Project Loon is creating a worldwide network of high-altitude balloons which would connect directly to a user's smartphone through 3G and LTE. These balloons have an advantage of height, meaning each balloon can cover an area of 5000 sqkm unlike a cell tower which covers around 5-10 sqkm. These balloons can now communicate among themselves for as long as 80 km and in chains of 10, meaning not a lot of investment in telecom backhaul and ground stations are needed. Although these balloons are difficult to navigate since they rely only on stratospheric winds, it is a fun problem to solve. As Google is perfecting WiFi to cellular handoffs with Project Fi, its new role as an MVNO (virtual network), balloons and drones (Titan) may play a crucial role in its roaming success.
Facebook through their Connectivity lab is developing stratospheric drones which would use a mix of laser and radio links to connect to ground receivers and also create an aerial drone-based backhaul network. Drones of Facebook are still in prototyping stage and details of their delivery model is not yet available in public domain.
Another method is to use White Space to provide broadband services espl. in rural areas. White Space is the free and unused spectrum that's increasing as TV broadcasting moves from analog to digital transmission. Transmission happens over UHF spectrum, meaning towers can be spaced at longer distances (10km). But phone/tablet users cannot connect directly (yet) and have to rely on WiFi hubs which can receive these signals. Google and Microsoft (4Afrika Initiative) are two of the major companies who are testing this technology with a focus on Africa.
1945 Proposal of Arthur C. Clarke for Geostationary Satellite Communications. Source: lakdiva.org
A promising new approach to connectivity is by the proposed small satellite constellations of SpaceX, OneWeb, LeoSat and Yaliny. These satellites would be in low earth orbit altitudes (around 1000-1200 km) meaning the latency of their connection would be similar to fiber (< 30ms). Current satellite Internet services have high latencies (>300ms) due to the distant location of their satellites (Geostationary --- 35786km).
Although not all Internet applications need low latencies, it is crucial for communication services like VoIP, messaging and transactional services like banking. Also, satellites would need far fewer hops to connect to international CDNs compared to fiber-based networks, meaning countries in Africa where most fiber connections still have very high latency can now be serviced with faster connections.
At the receiver end, OneWeb and SpaceX are developing low-cost (USD 100-300), solar-powered transceivers which would provide 3G, LTE and WiFi connectivity to local communities.
CubeSats of Planet Labs deployed from the ISS for Earth Imaging. Source: Steve Jurvetson/Flickr
OneWeb has a constellation size of 648 satellite with a combined throughput of 10Tbps. Each OneWeb satellite can cover an area of approx. 800,000 sq.km. and each transceiver can provide services at up to 50Mbps. SpaceX has a more ambitious plan of launching around 4000 satellites starting 2019 till 2030, predominantly to serve the International backhaul market which today operates on a network of undersea cables carrying over 95% of the international traffic. Yaliny is developing a handheld satellite transceiver which would connect to the user and provide unlimited data at $10 per month. LeoSat is primarily targeting enterprise customers such as Telecom backhaul, Defence, Oil&Gas and would deliver bandwidth as high as 1.2 Gbps.
Airbus was awarded the contract to build OneWeb's 900 satellites. Source: Airbus (Youtube)
Many Satellite-based Internet ventures were proposed in the 90's which eventually failed due to limitations of technology and fast proliferation of terrestrial networks. Key innovations in satellite miniaturization, phased array antenna (electronically-steered) and solid state amplifiers (GaN) are making these constellations technologically and economically feasible now. Also, the increase in availability and reduction in costs of launch services for small satellites provided by private space companies is accelerating these ventures. Developing rapidly reusable rockets, like SpaceX Falcon 9R, would improve availability and cut costs further by orders of magnitude (10 to 100 times). These ventures have also attracted significant investor interest with SpaceX raising $1 billion from Google and Fidelity and OneWeb raising $500 million from a consortium of investors.
Two important issues that crop up on the regulatory front are spectrum allocation and landing rights. OneWeb has been granted the global license to operate in the non-Geo Ku-band by the ITU if they become operational by 2019. But it isn't clear how new satellite constellations would be allotted such spectrum while operating relatively free of interference. SpaceX's application for permission from the US FCC to test two of its satellites has already drawn objections from Intelsat. On the issue of landing rights, OneWeb would be partnering with domestic telecom operators using their ground stations and gateways to beam Internet, therefore they may not confront many domestic regulatory road blocks. It is not clear at this point how SpaceX would be delivering their services to the end user. Yaliny is perhaps most prone to governmental scrutiny since they would be operating based on a network of international ground stations.
In India, the second largest telecom market, Internet penetration is estimated to be still around 20% although rural and urban teledensity stand at 45% and 148% respectively. Over 90% of Indian Internet users connect to and 65% of the traffic flows through wireless networks. These numbers are no different compared to sub-Saharan Africa because telecom networks in developing nations today are predominantly built for voice (2G) and not data communications. Although average revenue per user (ARPU) in rural ($1.5) and urban ($2-2. 5) areas do vary, lack of connectivity can be attributed majorly to high CapEx (costly backhaul) and OpEx (off-grid diesel power) of existing technologies.
The Govt of India is developing BharatNet as part of the Digitial India program, a revamped and larger version of the National Optical Fiber Network (NOFN) which plans on providing fiber optic connectivity to most of the 2.5 lac Gram Panchayats (moderate size villages). The projected cost of the project stands at $ 12 Billion with around 75% cost going into laying the optical fiber to connect 2.26 lac GPs. Of the rest, 20 thousand GPs would be connected wirelessly and 3000 through satellite Internet. At the village level, community WiFi would be provided to local institutions such as schools, post offices, health centers along with cable Internet to households.
The Government can take proactive steps to augment the capacity and reach of BharatNet by following open standards in integrating them with private Internet ventures to ensure interoperability. ISRO, India's national space agency, can launch more Geostationary satellites (like the INSAT) to increase the throughput over its territory. This would allow traffic to be diverted from low altitude systems for applications such as video, news and less interactive content which wouldn't need low latency connections. These Geostationary satellites can also be used to empower community defined broadcasting services like Outernet. Other models such as building small satellite platforms in highly elliptical orbits (like Molniya) can be explored to improve performance over specific regions.
Internet is the most important invention of the 20th Century. It has changed the way people communicate, cooperate, learn and trade globally. The possibilities with a ubiquitous Internet coverage are endless. Let's discuss four key areas which would have direct and positive effect: healthcare, education, agriculture and Internet governance.
Innovations in sensors and computing are rapidly miniaturizing and reducing costs of diagnostic devices and new drone-based delivery networks (Matternet) are making medicines more accessible, meaning early detection and fast remedial actions can now be made universal. As Chris Anderson would argue, this is the peace dividend of the smartphone wars.
Education will face a similar disruption when the best educators in the world can reach a virtual classroom of hundreds of thousands of students while also personalizing their learning experience. Although some may oppose the notion of machines teaching humans, it is inevitable.
Source: One Laptop Per Child/Flickr
Small satellites (like those of Planet Labs, Skybox) are democratizing satellite imagery, meaning agriculture produce, environment, disasters among others can now be monitored in near real time. Smart tools can be built for farmers across the world to provide accurate weather and price forecasts so as to improve their productivity and income.
Source: Planet Labs
Peter Diamandis opens his book Abundance with a story on aluminum. When the King of Siam visited Napoleon III's court, Napoleon was himself served in gold utensils while the honored guest was served in aluminum utensils. Although the third most abundant element on earth's crust, aluminum was the costliest metal till 19th century. With the invention of electrolysis, we could make aluminum one of the cheapest and most accessible metal today. The conflict over net neutrality arose primarily because bandwidth has been perceived as a scarce resource. Exponential innovation can create abundance through a combination of cheap smartphones and global connectivity allowing us to avert such conflict.
Never before in human history could we expand our circle of empathy and develop a collective consciousness encompassing the whole of humanity.
This could be our first chance!
Shop Apple Watch deals ahead of Prime DayNASA plane swooped over the Arctic. It detected a buried military base.Tencent’s Yuanbao tops Apple’s China App Store, surpassing DeepSeek · TechNodeAT&T data breach impacts tens of millions of customersScientists find a galaxy that defies conventional wisdomIntrepid moon lander witnesses truly breathtaking lunar sunriseBest early Prime Day MacBook deals 2024: M2 Air down to record lowNYT's The Mini crossword answers for July 12Chinese GPU firm MetaX plans to lay off 200 employees ahead of IPO launch · TechNodeGoogle partners with MediaTek for nextA secretive U.S. spaceplane just snapped a stunning view of EarthWebb telescope spots curious objects that aren't stars, or planetsDidi’s selfNASA makes crucial move to keep its legendary Voyager craft aliveTrump open to extending TikTok sale deadline · TechNodeGoogle partners with MediaTek for nextNASA just jumped online to correct outrageous space station misinformationFree Slurpee Day 2024: How to get one and why it mattersScientists find how often sunTencent’s Yuanbao tops Apple’s China App Store, surpassing DeepSeek · TechNode Jeff Bezos creates new philanthropy: the Bezos Day One Fund Let Chelsea Peretti eat cake (even if she does it wrong) LGBTQ gamers are rejoicing about the pride flags in 'Marvel's Spider Elon Musk puts Twitter deal 'on hold' due to fake accounts report Wordle today: Here's the answer, hints for May 14 A dad's new credit card turned out horribly wrong 'The Office BFFs' review: Jenna Fischer and Angela Kinsey's book is a must Merge Mansion and Kathy Bates are following me around the internet Gmail isn't biased against Republicans. They're just bad at sending emails. Hulu teams up with Xbox to give subscribers 3 free months of PC Game Pass Les Moonves leaves CBS, $20 million to be donated to #MeToo movement Fighting snakes fall through bedroom ceiling, and that's enough internet for today Heated fingerless gloves are perfect for your refrigerator of an office Apple is testing Tap to Pay at Apple Park, and it's really fast Amazon will ship live Christmas trees to your door — but will they stay and put on the damn lights? Dear Fitbit: How to stop me, a loyal user, switching to a new Apple Watch Donald Trump fist pumped on his way to a 9/11 memorial service and it's not going over well Massive cliff chunk collapses onto beach in Greece Olivia Munn talks 'The Predator' casting sex offender: Watch Apple's iPhone might finally ditch Lightning for USB
2.28s , 10178.6015625 kb
Copyright © 2025 Powered by 【Hizoban Higasa no onna】,Evergreen Information Network